1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
use serde::{de::DeserializeOwned, Serialize};
use crate::addresses::{CanonicalAddr, HumanAddr};
use crate::coins::Coin;
use crate::encoding::Binary;
use crate::errors::{
RecoverPubkeyError, SigningError, StdError, StdResult, SystemResult, VerificationError,
};
#[cfg(feature = "iterator")]
use crate::iterator::{Order, KV};
use crate::query::{AllBalanceResponse, BalanceResponse, BankQuery, QueryRequest};
#[cfg(feature = "staking")]
use crate::query::{
AllDelegationsResponse, BondedDenomResponse, Delegation, DelegationResponse, FullDelegation,
StakingQuery, Validator, ValidatorsResponse,
};
use crate::serde::{from_binary, to_vec};
use crate::types::Empty;
/// Holds all external dependencies of the contract.
/// Designed to allow easy dependency injection at runtime.
/// This cannot be copied or cloned since it would behave differently
/// for mock storages and a bridge storage in the VM.
pub struct Extern<S: Storage, A: Api, Q: Querier> {
pub storage: S,
pub api: A,
pub querier: Q,
}
impl<S: Storage, A: Api, Q: Querier> Extern<S, A, Q> {
/// change_querier is a helper mainly for test code when swapping out the Querier
/// from the auto-generated one from mock_dependencies. This changes the type of
/// Extern so replaces requires some boilerplate.
pub fn change_querier<T: Querier, F: Fn(Q) -> T>(self, transform: F) -> Extern<S, A, T> {
Extern {
storage: self.storage,
api: self.api,
querier: transform(self.querier),
}
}
}
/// ReadonlyStorage is access to the contracts persistent data store
pub trait ReadonlyStorage {
/// Returns None when key does not exist.
/// Returns Some(Vec<u8>) when key exists.
///
/// Note: Support for differentiating between a non-existent key and a key with empty value
/// is not great yet and might not be possible in all backends. But we're trying to get there.
fn get(&self, key: &[u8]) -> Option<Vec<u8>>;
#[cfg(feature = "iterator")]
/// Allows iteration over a set of key/value pairs, either forwards or backwards.
///
/// The bound `start` is inclusive and `end` is exclusive.
///
/// If `start` is lexicographically greater than or equal to `end`, an empty range is described, mo matter of the order.
fn range<'a>(
&'a self,
start: Option<&[u8]>,
end: Option<&[u8]>,
order: Order,
) -> Box<dyn Iterator<Item = KV> + 'a>;
}
// Storage extends ReadonlyStorage to give mutable access
pub trait Storage: ReadonlyStorage {
fn set(&mut self, key: &[u8], value: &[u8]);
/// Removes a database entry at `key`.
///
/// The current interface does not allow to differentiate between a key that existed
/// before and one that didn't exist. See https://github.com/CosmWasm/cosmwasm/issues/290
fn remove(&mut self, key: &[u8]);
}
/// Api are callbacks to system functions defined outside of the wasm modules.
/// This is a trait to allow Mocks in the test code.
///
/// Currently it just supports address conversion, we could add eg. crypto functions here.
/// These should all be pure (stateless) functions. If you need state, you probably want
/// to use the Querier.
///
/// We can use feature flags to opt-in to non-essential methods
/// for backwards compatibility in systems that don't have them all.
pub trait Api: Copy + Clone + Send {
/// Takes a human readable address and returns a canonical binary representation of it.
/// This can be used when a compact fixed length representation is needed.
fn canonical_address(&self, human: &HumanAddr) -> StdResult<CanonicalAddr>;
/// Takes a canonical address and returns a human readble address.
/// This is the inverse of [`canonical_address`].
///
/// [`canonical_address`]: Api::canonical_address
fn human_address(&self, canonical: &CanonicalAddr) -> StdResult<HumanAddr>;
/// ECDSA secp256k1 signature verification.
///
/// This function verifies message hashes (hashed unsing SHA-256) against a signature,
/// with the public key of the signer, using the secp256k1 elliptic curve digital signature
/// parametrization / algorithm.
///
/// The signature and public key are in "Cosmos" format:
/// - signature: Serialized "compact" signature (64 bytes).
/// - public key: [Serialized according to SEC 2](https://www.oreilly.com/library/view/programming-bitcoin/9781492031482/ch04.html)
fn secp256k1_verify(
&self,
message_hash: &[u8],
signature: &[u8],
public_key: &[u8],
) -> Result<bool, VerificationError>;
/// Recovers a public key from a message hash and a signature.
///
/// This is required when working with Ethereum where public keys
/// are not stored on chain directly.
///
/// `recovery_param` must be 0 or 1. The values 2 and 3 are unsupported by this implementation,
/// which is the same restriction as Ethereum has (https://github.com/ethereum/go-ethereum/blob/v1.9.25/internal/ethapi/api.go#L466-L469).
/// All other values are invalid.
///
/// Returns the recovered pubkey in compressed form, which can be used
/// in secp256k1_verify directly.
fn secp256k1_recover_pubkey(
&self,
message_hash: &[u8],
signature: &[u8],
recovery_param: u8,
) -> Result<Vec<u8>, RecoverPubkeyError>;
/// EdDSA ed25519 signature verification.
///
/// This function verifies messages against a signature, with the public key of the signer,
/// using the ed25519 elliptic curve digital signature parametrization / algorithm.
///
/// The maximum currently supported message length is 4096 bytes.
/// The signature and public key are in [Tendermint](https://docs.tendermint.com/v0.32/spec/blockchain/encoding.html#public-key-cryptography)
/// format:
/// - signature: raw ED25519 signature (64 bytes).
/// - public key: raw ED25519 public key (32 bytes).
fn ed25519_verify(
&self,
message: &[u8],
signature: &[u8],
public_key: &[u8],
) -> Result<bool, VerificationError>;
/// Performs batch Ed25519 signature verification.
///
/// Batch verification asks whether all signatures in some set are valid, rather than asking whether
/// each of them is valid. This allows sharing computations among all signature verifications,
/// performing less work overall, at the cost of higher latency (the entire batch must complete),
/// complexity of caller code (which must assemble a batch of signatures across work-items),
/// and loss of the ability to easily pinpoint failing signatures.
///
/// This batch verification implementation is adaptive, in the sense that it detects multiple
/// signatures created with the same verification key, and automatically coalesces terms
/// in the final verification equation.
///
/// In the limiting case where all signatures in the batch are made with the same verification key,
/// coalesced batch verification runs twice as fast as ordinary batch verification.
///
/// Three Variants are suppported in the input for convenience:
/// - Equal number of messages, signatures, and public keys: Standard, generic functionality.
/// - One message, and an equal number of signatures and public keys: Multiple digital signature
/// (multisig) verification of a single message.
/// - One public key, and an equal number of messages and signatures: Verification of multiple
/// messages, all signed with the same private key.
///
/// Any other variants of input vectors result in an error.
///
/// Notes:
/// - The "one-message, with zero signatures and zero public keys" case, is considered the empty case.
/// - The "one-public key, with zero messages and zero signatures" case, is considered the empty case.
/// - The empty case (no messages, no signatures and no public keys) returns true.
fn ed25519_batch_verify(
&self,
messages: &[&[u8]],
signatures: &[&[u8]],
public_keys: &[&[u8]],
) -> Result<bool, VerificationError>;
/// ECDSA secp256k1 signing.
///
/// This function signs a message with a private key using the secp256k1 elliptic curve digital signature parametrization / algorithm.
///
/// - message: Arbitrary message.
/// - private key: Raw secp256k1 private key (32 bytes)
fn secp256k1_sign(&self, message: &[u8], private_key: &[u8]) -> Result<Vec<u8>, SigningError>;
/// EdDSA Ed25519 signing.
///
/// This function signs a message with a private key using the ed25519 elliptic curve digital signature parametrization / algorithm.
///
/// - message: Arbitrary message.
/// - private key: Raw ED25519 private key (32 bytes)
fn ed25519_sign(&self, message: &[u8], private_key: &[u8]) -> Result<Vec<u8>, SigningError>;
}
/// A short-hand alias for the two-level query result (1. accessing the contract, 2. executing query in the contract)
pub type QuerierResult = SystemResult<StdResult<Binary>>;
pub trait Querier {
/// raw_query is all that must be implemented for the Querier.
/// This allows us to pass through binary queries from one level to another without
/// knowing the custom format, or we can decode it, with the knowledge of the allowed
/// types. People using the querier probably want one of the simpler auto-generated
/// helper methods
fn raw_query(&self, bin_request: &[u8]) -> QuerierResult;
/// query is a shorthand for custom_query when we are not using a custom type,
/// this allows us to avoid specifying "Empty" in all the type definitions.
fn query<T: DeserializeOwned>(&self, request: &QueryRequest<Empty>) -> StdResult<T> {
self.custom_query(request)
}
/// Makes the query and parses the response. Also handles custom queries,
/// so you need to specify the custom query type in the function parameters.
/// If you are no using a custom query, just use `query` for easier interface.
///
/// Any error (System Error, Error or called contract, or Parse Error) are flattened into
/// one level. Only use this if you don't need to check the SystemError
/// eg. If you don't differentiate between contract missing and contract returned error
fn custom_query<T: Serialize, U: DeserializeOwned>(
&self,
request: &QueryRequest<T>,
) -> StdResult<U> {
let raw = match to_vec(request) {
Ok(raw) => raw,
Err(e) => {
return Err(StdError::generic_err(format!(
"Serializing QueryRequest: {}",
e
)))
}
};
match self.raw_query(&raw) {
Err(sys) => Err(StdError::generic_err(format!(
"Querier system error: {}",
sys
))),
Ok(Err(err)) => Err(err),
// in theory we would process the response, but here it is the same type, so just pass through
Ok(Ok(res)) => from_binary(&res),
}
}
fn query_balance<U: Into<HumanAddr>>(&self, address: U, denom: &str) -> StdResult<Coin> {
let request = BankQuery::Balance {
address: address.into(),
denom: denom.to_string(),
}
.into();
let res: BalanceResponse = self.query(&request)?;
Ok(res.amount)
}
fn query_all_balances<U: Into<HumanAddr>>(&self, address: U) -> StdResult<Vec<Coin>> {
let request = BankQuery::AllBalances {
address: address.into(),
}
.into();
let res: AllBalanceResponse = self.query(&request)?;
Ok(res.amount)
}
#[cfg(feature = "staking")]
fn query_validators(&self) -> StdResult<Vec<Validator>> {
let request = StakingQuery::Validators {}.into();
let res: ValidatorsResponse = self.query(&request)?;
Ok(res.validators)
}
#[cfg(feature = "staking")]
fn query_bonded_denom(&self) -> StdResult<String> {
let request = StakingQuery::BondedDenom {}.into();
let res: BondedDenomResponse = self.query(&request)?;
Ok(res.denom)
}
#[cfg(feature = "staking")]
fn query_all_delegations<U: Into<HumanAddr>>(
&self,
delegator: U,
) -> StdResult<Vec<Delegation>> {
let request = StakingQuery::AllDelegations {
delegator: delegator.into(),
}
.into();
let res: AllDelegationsResponse = self.query(&request)?;
Ok(res.delegations)
}
#[cfg(feature = "staking")]
fn query_delegation<U: Into<HumanAddr>>(
&self,
delegator: U,
validator: U,
) -> StdResult<Option<FullDelegation>> {
let request = StakingQuery::Delegation {
delegator: delegator.into(),
validator: validator.into(),
}
.into();
let res: DelegationResponse = self.query(&request)?;
Ok(res.delegation)
}
}